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The shedding of vortices and #ow interference between two circular cylinders in tandem and
side-by-side arrangements are investigated numerically in this paper. A Fractional Step Method
is used for the simulations and the #ow is assumed two-dimensional. The calculations are
carried out on a three-noded unstructured mesh. The simulations are performed for a Reynolds
number range varying from 100 to 200, and the #ow is solved through the "nite-element
method. The mesh is "ner close to the cylinder wall in order to have a better description of the
boundary layer. Vorticity contours of the #ow around the cylinders and force time histories are
presented. The calculations are also compared to the experimental results obtained by Bearman
& Wadcock in 1973 and Williamson in 1985. The numerical simulations, in this sense,
complement their work with very detailed vorticity calculations and #ow visualizations.

( 2001 Academic Press.
1. INTRODUCTION

THE FLOW ABOUT GROUPS of cylinders has been the subject of many studies in the past. Flow
interference is responsible for several changes in the characteristics of #uid loads when more
than one body is placed in a #uid stream. Investigations of the #ow around pairs of
cylinders can provide a better understanding of the vortex dynamics, pressure distribution
and #uid forces, in cases involving more complex arrangements. This paper presents
a detailed numerical study of the #ow about a pair of cylinders in side-by-side and in
tandem con"gurations.

The main practical application of this investigation is to have a better understanding of
the #ow around a bundle of risers which links the seabed to the o!shore platforms used for
oil exploration. These risers are subject to shear and oscillatory #ows due to currents and
waves, respectively, #ows with a very high degree of complexity, with changes of intensity
and direction the deeper the water depth. Most of the Brazilian #oating platforms are
installed along the continental shelf of the Atlantic Ocean where water depths over 1000 m
are common. In such conditions a better understanding of the vortex dynamics causing
vibration of risers is essential.

Zdravkovich (1977, 1987) has reviewed the problem of #ow interference when two
cylinders are placed in side-by-side, tandem and staggered arrangements in a steady current.
0889}9746/01/020327#24 $35.00/0 ( 2001 Academic Press
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Quoting his words, he observed that &&when more than one blu! body is placed in a #uid
#ow, the resulting forces and vortex shedding pattern may be completely di!erent from
those found on a single body at the same Reynolds number''. A variety of #ow patterns,
characterized by the behaviour of the wake region, may be discerned as the spacing between
two circular cylinders is changed.

Bearman & Wadcock (1973) investigated the e!ect of interference with two cylinders in
a side-by-side arrangement. They measured the pressure distribution around the bodies,
and found a repulsive force between the cylinders for a particular range of gap spacing. They
justi"ed the appearance of this force as a consequence of a rotation of the resultant force
vector due to the presence of the second cylinder. For a very small gap, Bearman &
Wadcock observed a marked asymmetry in the #ow with the two cylinders experiencing
di!erent drags and base pressures. The gap #ow acted as a base bleed, and then the drag of
the cylinders in combination was less than the sum of the drags of the isolated cylinders.

The evolution of the wakes formed behind a pair of cylinders placed side by side, has also
been studied by Williamson (1985). He found that for a certain range of the gap between the
cylinders, the wakes were synchronized, either in phase or in anti-phase. He observed that
below a critical gap between the cylinders the #ow became asymmetric, similar to the result
found by Bearman & Wadcock. Other experimental studies to be mentioned are those by
Arie et al. (1983), Kim & Durbin (1988) and Summer et al. (1998).

Ng & Ko (1995) investigated the problem numerically by using a discrete vortex method.
They studied two cylinders in a tandem con"guration. In their method two vortices were
shed per cylinder in each time step. These vortices were released from the separation points,
whose locations were evaluated following the solution of the boundary layer employing the
Thwaites'method. The number of vortices was kept below 2000 by the use of an amalgama-
tion procedure. Although the method was very simple, some of the wakes obtained were in
very close agreement with experimental results. Mittal et al. (1997) studied the case of two
cylinders in tandem and in an oblique con"guration. The investigation was primarily
concerned with the change in the drag coe$cient for each of these cases. The main result
observed was that the downstream cylinder experienced an increase in drag when it was
placed at an oblique con"guration. Other numerical studies to be cited are those by Slaouti
& Stansby (1992 & 1993). They employed the discrete vortex method including viscous
di!usion, modelled by the random walk method, to study the #ow around circular
cylinders.

The results with a side-by-side con"guration of cylinders with the same diameter (D)
obtained by Bearman & Wadcock (1973), Williamson (1985) and Kim & Durbin (1988)
show that, when the distance (¸) between the centres of cylinders is below about 2)2D, only
one wake is formed. This wake is de#ected in the direction of one of the cylinders in an
alternating way. This phenomenon has been named &&#opping'' or &&#ip-#opping'' by
Williamson. The time scale of this #opping is more than 1000 times the time scale of vortex
shedding.

When the two cylinders are placed apart in a side-by-side con"guration by a distance
greater than 2)2D, two wakes are formed and these wakes are most of the time in anti-phase.
This has been observed by Williamson and corroborated by Summer et al. (1998). For
¸'5D, the #ow around of the cylinders is similar to that encountered for a single circular
cylinder.

Three possible regimes are found with two circular cylinders in a tandem arrangement,
following Zdravkovich (1977, 1987). The "rst is observed when the distance between the
centres of the cylinders is less than 1)2D}1)8D (depending on the Reynolds number). In this
case the separating #ow from the upstream cylinder is not captured by the wall of the
downstream body. In this way, there is the formation of only one wake due to the separating
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shear layers from the upstream cylinder. In the second regime, observed for gaps in the
range of 1)2}1)8(¸/D(3)4} 3)8, a separation bubble is formed behind the upstream
cylinder. It is captured by the downstream body and there is a reattachment of the shear
layers emanating from the "rst cylinder to the wall of the second one. The wake is formed
behind the downstream body due to separation occurring on its surface. Finally, in the third
regime, for gaps ¸/D'4)0, vortex shedding occurs from both cylinders. The wake behind
the second cylinder is called binary, because each vortex is formed by the combination of
one vortex shed from the upstream body and another by the downstream cylinder. In the
"rst two regimes, the drag coe$cient on the downstream cylinder is considerably lower than
the one on the other body. This fact can be understood by noticing that for this case the
downstream cylinder is inside the wake formed by the upstream cylinder, i.e., it is immersed
in a region of low pressure. This force can even be negative.

It is already known that vortex shedding is a three-dimensional phenomenon. However,
two-dimensional simulations at low Reynolds number, as a "rst approximation to the
problem, can be used to give some insight about the details of the vortex dynamics in the
wake and vortex impingement occurring when the cylinders are arranged in a tandem
con"guration. Very few numerical studies about this subject can be found in the literature.
The attraction of applying numerical methods to such problems is that the #ow can be
studied in closer detail. In this sense, fundamental knowledge can be achieved by perform-
ing a parametric analysis of the phenomenon in a relatively fast way via the numerical
calculations. Most of the calculations in this paper are carried out at a Reynolds number,
Re"200. At this value, the Strouhal number (St) is approximately 0)2. Increasing Re in the
pre-critical regime (2004Re4105!5]105), the observed value of St is still close to 0)2,
which suggests a certain similarity of the vortex dynamics in this range of Re. This
observation enables us to compare, as a "rst approximation, numerical simulations at low
Re with experiments at higher Re, as long as both are in this regime.

This paper is organized as follows: details about the numerical method used in the
simulations and the force calculation are presented in the "rst two sections. The validation
of the algorithm follows in the next section. Of the many possible arrangements that two
cylinders can be positioned relatively to a cross #ow, we have selected two in this
investigation. The "rst group consists of two cylinders in a tandem arrangement, one behind
the other at some longitudinal spacing. The second group comprises a pair of cylinders
facing the #ow in a side-by-side manner. In the third section of this paper, we present the
results for these arrangements. Flow visualizations, force time histories, Strouhal number
evaluations, are shown for various values of gaps. We also investigate the so-called
&&#opping'' phenomenon and present a FFT analysis of the lift coe$cient. In the "nal
section, conclusions are drawn.

2. THEORY AND NUMERICAL METHOD

2.1. FUNDAMENTALS OF THE METHOD

An explicit computational method is developed in order to investigate the #ow around two
circular cylinders. A Fractional Step Method with Galerkin's "nite-element formulation is
employed on an unstructured mesh, and a velocity correction projection method is used to
solve the Navier}Stokes equations.

The fractional step method with a weighted residual Galerkin formulation shown here is
slightly di!erent from the classical Streamline;pwind Petrov-Galerkin (SUPG) developed by
Brooks & Hughes (1982). In the method presented, which employs the standard Galerkin
formulation of the "nite-element method, the test functions are the same as trial functions.
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One of the attractive properties of this approach is that the discretization of a Laplacian
operator results in a symmetric sti!ness matrix; in addition, the implementation of homo-
geneous Neumann's-type boundary conditions is particularly straightforward. In the latter
case, both weighting and interpolation functions are not selected from the same class of
functions. Instead, the Galerkin weighting functions are replaced by the so-called Hughes
weighting functions, leading to a variational formulation which di!ers from the Galerkin
method, so that some of the terms are multiplied by the Petrov}Galerkin functions.

Following Manna (1997), the fractional step concept is considered a generic approach
and several variations can be found in the literature. The particular method shown here
has also been developed by Meling & Dalheim (1997). The governing equations for
a Newtonian, incompressible viscous #ow are the conservation of mass and the
Navier}Stokes equations. In two-dimensions and without body forces, they may be written
as follows:
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where the summation convention applies, u
i
are the velocity components, p is the pressure,

l is the kinematic viscosity, and o is the density of the #uid. The outer boundary condition
for the velocity is its free-stream value and for the pressure is a prescribed value equal to P

=
.

On the circular cylinder surface a no-slip condition is applied, which implies that the #uid
velocity is zero.

A fractional step formulation is applied for the time discretization of the governing
equations (1) and (2). First, an intermediate velocity is computed by neglecting the pressure.
The pressure "eld is then calculated by means of a Poisson's equation, and the velocity "eld
is "nally corrected by including the pressure e!ect. For the purpose of determining
a intermediate velocity a two-step Taylor}Galerkin formulation is employed.

Considering a time increment *t"t(n`1)!t(n), the fractional step method algorithm is
given as follows:
(i) at time t(n`1) an intermediate velocity uJ

i
is calculated by means of an integration of the

reduced momentum equation omitting the pressure:

uJ (n`1)
i

"u (n)
i

!P
tn`1

tn
Cuj

Lu
i

Lx
j

!l
L2u

i
Lx

j
Lx

j
D dt, i, j"1, 2; (3)

(ii) the complete velocity u
i
at t(n`1) is computed by including the pressure "eld:
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(iii) the "nal velocity "eld must satisfy the continuity equation, i.e.
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In order to solve the "rst step of this algorithm, a predictor}corrector formulation,
as suggested by Meling & Dalheim (1997), is employed. An intermediate velocity uJ (n`1@2)

i
,

at a time increment *t/2, is calculated, and then the velocity u(n)
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is up-dated



FLOW INTERFERENCE BETWEEN TWO CIRCULAR CYLINDERS 331
as follows:
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The velocity evaluated by equation (7) is employed for the convection in the correction step
of the method.

The second and third steps are responsible for the computation of the complete velocity
"eld that satis"es the continuity equation and they are combined by means of a pressure
equation (Poisson's equation). Taking the divergence of the following discretized form of
equation (4)
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and using the continuity equation given in equation (6), the Poisson's equation that arises is
given by
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An alternative form of the algorithm could include the known pressure "eld for the
prediction of the intermediate velocity, and then computing the pressure di!erence instead
of including the complete pressure "eld. However, as can be seen in Meling & Dalheim
(1997), the removal of the pressure term in equation (3) has advantages, since no spurious
pressure modes are obtained. An equal order of interpolation can still be used for velocity
and pressure. In the case of the standard SUPG, there is no inclusion of pressure stabiliz-
ation, and the pressure interpolation functions remain unchanged.

As far as the Babuska}Brezzi stability criterion is concerned, the inf}sup test (Brezzi
& Fortin 1991) has not been checked in this work rigorously (numerically). Nevertheless,
the authors were aware about the boundary conditions, at least assuming them smooth. In
this way, as can be seen later on this paper, the extension of the outer boundary has been set
in order not to cause any perturbation in the near-wake #ow.

Regarding the boundary conditions for the complete velocity "eld, the prescribed values
considered for the cylinder wall and outer boundary conditions have also been set for the
intermediate step. According to the authors' experience, also observed in three-dimensional
studies [see Siqueira et al. (2000)], this procedure does not give rise to unrealistic or
doubtful solutions.

2.2. FINITE-ELEMENT FORMULATION FOR THE SPATIAL DISCRETIZATION

A Galerkin "nite-element formulation is applied to the spatial discretization of the algo-
rithm described previously for an unstructured three-noded mesh. As can be seen in
Zienkiewicz & Morgan (1983), for any two-dimensional analysis the triangle is a parti-
cularly useful shape and can represent with a high degree of accuracy regions enclosed by
boundaries of any shape.

The connectivity between elements and nodes (named as i, j and k) is arranged under the
consistent node numbering system of an anticlockwise order. The continuity requirement of
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the shape functions can be ensured by assuming a linear form as follows:
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where *e is the area of the element. De"nitions for the other coe$cients related to remaining
nodes j and k are cyclic rearrangements of the above, leading to similar expressions.

The "elds of velocity and pressure are approximated by a piecewise linear spatial
variation over the elements in the domain. The representation is therefore

u
i
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where N is the shape function vector, Ui and P represent the nodal values of the velocity
components and pressure, respectively.

Applying a weighted residual formulation to the governing equations, one obtains the
following set of matrix equations:
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where the boundary integrals resulting from integration by parts of the di!usion term and
the pressure Poisson equation are omitted due to the applied boundary conditions.

The global matrices are then de"ned as follows:
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where (CM
j
)
e

is the element mean convective velocity component, evaluated at the element
centroid. This &&centroid convection velocity'' procedure was "rst proposed by Gresho et al.
(1984) and simpli"es the convection matrix.

Rather than loop over the elements whilst calculating the local element sti!ness matrix,
the global matrices are assembled prior to the time march. The sti!ness matrix is a discretiz-
ation of the Laplacian, and since it is a symmetric matrix, only the upper triangular part is
stored, in order to save memory. Because the mesh is fully unstructured, the global matrices
have no structure, and are stored in a format which puts subsequent nonzeros in contiguous
memory locations. These are assembled in a pre-processing program.

The preceding linear systems that should be solved in the present method require an
e$cient, fast and accurate solver for sparse, symmetric and banded matrices. The pre-
conditioned conjugate gradient method with diagonal scaling was implemented in this
work for this purpose.
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Following Barrett et al. (1992), the convergence rate of iterative methods depends on
spectral properties of the coe$cient matrix. The purpose of using a preconditioner is an
attempt to transform the linear system into one that should be equivalent and has more
favourable spectral properties. In this paper the diagonal scaling was employed, which
improved convergence rates dramatically. This was suggested by Arkell (1997) in a private
communication and consists of taking as preconditioner the diagonal of the coe$cient
matrix.

2.3. FORCE EVALUATION

Force coe$cients are calculated by suitably integrating the pressure and skin friction
contributions. The pressure distribution around the surface of the cylinder is obtained from
the solution of the Poisson's equation for the pressure, i.e., the solution of equation (13). The
skin friction contribution is obtained from the de"nition of the shear stress at the wall,
which yields
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where k is the dynamic viscosity, q
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is the shear stress, u
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is the tangential velocity at the

wall, and n is the normal direction to the wall. After considering the contributions from skin
friction and pressure, the force components are resolved in the two directions (x, y), yielding
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. These forces are then nondimensionalized as follows:
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where o is the #uid density, and ;
=

is the free-stream velocity.

3. NUMERICAL RESULTS

3.1. VALIDATION OF THE ALGORITHM

In order to validate the computational code, two-dimensional simulations in a Reynolds
number range varying from 100 to 200 have been carried out. The Reynolds number is
de"ned in terms of the cylinder diameter (D) and the free stream velocity (; ), Re"UD/l.
A nondimensional time step, ;t/D, equal to 0)0050 has been used.

An unstructured "nite element mesh with 27 062 elements and 13 696 nodes has been
used. This mesh can be seen in Figure 1 and details near the cylinder surface are shown in
Figure 2. There are 128 points in order to discretize the cylinder wall. The centre of the
cylinder is located at co-ordinate (0,0). The extension of the outer boundary has been set in
order not to cause any perturbation in the near-wake #ow. The "rst node near the cylinder
wall is located at a distance of about 1% of the cylinder radius. Ten nodes are positioned
within a sub-domain delimited by a normal distance of 0)15D from the cylinder wall. Tests
have been performed indicating that the mesh with this de"nition lead to a suitable
boundary layer discretization. Other sub-domains are created for the wake and for the
fair-"eld regions as shown in Figures 1 and 2. These latter regions are then "lled with
triangles using the program ANSYS 5.1. During the generation process, ANSYS meshing
algorithms automatically generate elements using mesh smoothing and enhancement
procedures, which prevent from creating poorly shaped elements.

Primarily, comparisons of the drag coe$cient and Strouhal number for a single cylinder
at various values of Reynolds (Re) number were carried out and the results compared to



Figure 1. Unstructured "nite-element mesh for a single cylinder.

Figure 2. Details of the mesh used in the boundary layer.
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published data to validate the computational method. The Strouhal number is de"ned in
terms of the cylinder diameter (D), the free-stream velocity (; ), and the frequency (n) of
oscillation of the lift coe$cient, St"nD/;. In Table 1, the results for Re"100 are
presented and compared with results from other simulations and experiments. The average
drag coe$cient is 1)37, which is the same as the one found in the numerical simulations by
Braza et al. (1986), and slightly lower than the one found by Meneghini (1993) using
a hybrid discrete vortex method. The Strouhal number found in the present simulation is
very close to the experimental result obtained by Williamson (1991), as can be seen in
Table 1.



TABLE 1
Average drag coe$cients and Strouhal numbers for a single cylinder at

Re"100. Comparison with literature data

St
(Strouhal
number)

C
d!7(average drag

coe$cient)

Current fractional step method 0)165 1)37
Other results found in the literature
Braza et al. (1986) 0)160 1)37
Sa & Chang (1991) 0)155 1)23
Meneghini (1993) 0)162 1)52
Saltara (1999) 0)160 1)33

Experiments

Roshko (1954) 0)16}0)17
Tritton (1959) 1)25
Williamson (1991) 0)164

TABLE 2
Average drag coe$cients and Strouhal numbers for a single cylinder at

Re"200. Comparison with literature data

St C
d!7

Current fractional step method 0)196 1)30
Other results found in the literature
Borthwick (1986) 0)188 1)02
Braza et al. (1986) 0)200 1)35
Sa & Chang (1991) 0)186 1)13
Meneghini (1993) 0)196 1)25
Arkell (1995) 0)196 1)30
Giannakidis (1997) 0)190 1)25
Saltara (1999) 0)190 1)25

Experiments

Roshko (1954) 0)17}0)19
Williamson (1991) 0)196
Norberg (1993) 1)30
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The results for Reynolds number equal to 200 are summarized and compared to other
calculations and experiments in Table 2. For this Re the Strouhal number obtained here, i.e.
St"0)196, is the same as the value obtained by Meneghini (1993), Arkell (1995) and
Giannakidis (1997). All these calculations compare very well with the experimental result
obtained by Williamson. The average value of drag coe$cient is 1)30, comparing very well
with the one obtained experimentally by Norberg (1993) and other literature data for this
Reynolds number, as can be seen in Table 1. The peak-to-peak value of the lift is 1)40. The
wake structure, represented by the streaklines, is given in Figure 3. Lift and drag coe$cient
time histories are shown in Figure 4.

It is interesting to see the comparison of the Strouhal number curve obtained with the
simulations and the one obtained by Williamson in his experiments with very controlled
experimental conditions. This curve is shown in Figure 5, together with results obtained by
other simulations. The agreement here also is very good, showing the applicability of the
present algorithm to study vortex shedding from circular cylinders.



Figure 3. Wake structure for a single circular cylinder for Re"200.

Figure 4. Force coe$cients for Re"200, single cylinder.
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3.2. TANDEM ARRANGEMENTS

In order to investigate the proximity e!ect on vortex shedding, simulations have been
carried out for cylinders in tandem and side-by-side arrangements. For both cases, the gap
(¸) between the centres of the cylinders, which have the same diameter, was chosen in range
1)5D(¸(4D. A typical computational unstructured "nite-element mesh for the tandem
arrangement is shown in Figure 6. The mesh shown refers to a gap of 3D and consists of
26 064 elements and 13 219 nodes. Table 3 gives the nodal density of the meshes for the case
where the gap is ¸"1)5D and 4D for both tandem and side-by-side arrangements, showing
the range of variation in the number of elements and nodes for our study. The CPU time in
each case for a completion of a total nondimensional time of 500 is given in Table 4. All the



Figure 5. Comparison between experimental and numerical results (Fractional Step Method). Ex-
tended from Williamson (1991): Experimental results: d, wind tunnel, parallel shedding; s, wind
tunnel, oblique shedding; ], water tank; #, water tank. Numerical results: *, Karniadakis & Tri-
antafyllou (1989); } } } }, Sa & Chang (1991); n, Braza et al. (1986); h, Lecointe & Piquet (1988); j,
Martinez (1979); £, Koschel et al. (1989); z, Young & Ni (1989); *, Dolan et al. (1990); m, Shari! et al

(1990); #, present simulation.
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simulations were performed in an AlphaServer DS 20, dual processor (Alpha EV6
500 MHz) with 1 gbyte of memory.

The Reynolds number for all the simulations is equal to 200. The radius (R) of the
cylinders is equal to 1 and the point with coordinate (0,0) is located at the middle distance
between the cylinders. The outer boundary of the mesh extends downstream to 50R and
upstream to 21)3R. In the vertical direction, the outer boundaries are located at !21)3R
and 21)3R.

The nondimensional time step, ;
0
*t/D, is set to 0)005. The closest mesh point in the

normal direction to the wall is located at a distance of around 0)01R, and the mesh point
distribution is concentrated near the wall in order to give a very accurate boundary-layer
solution. Figure 7 shows a detailed view of the mesh near the wall of both cylinders,
stressing the importance of a suitably concentrated nodal distribution in the boundary layer
region. The number of nodes and triangles used for the simulations for the other gap values
is slightly di!erent, however, the general characteristics of the meshes are very similar.

Force coe$cient time histories for the gap values simulated are shown in Figure 8. The
drag coe$cient is positive for the upstream cylinder and negative for the downstream
cylinder for gaps less than 3D. The net e!ect of these drag, values is the manifestation of an



Figure 6. Typical unstructured "nite element for the tandem arrangement. Distance between the
centres equal to 3D.

Figure 7. Detail of the mesh near the wall for both cylinders. Distance between the centres
equal to 3D.
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attraction force between the cylinders. The drag coe$cient on the downstream cylinder
turns out to be less negative as the gap increases. These results are in accordance with the
experimental observations by Zdravkovich (1987), in which a negative drag has been
observed for the same gap range. The simulations were carried out from an impulsive
starting #ow to ;t/D"400.

The lift coe$cient time histories shown in panels (ii) and (iv) of Figures 8(a) and 8(b), for
gap values of ¸"1)5D and 2D, respectively, depict a small amplitude for both cylinders. It
is interesting to note that for ¸"2D it takes many cycles for the #ow to settle down and
reach a steady condition in terms of vortex shedding. As the gap is increased to 3D, the
amplitude of the lift on the downstream body reaches the order of magnitude observed in
the case of an isolated cylinder. The lift on the upstream cylinder still has a low amplitude
for this value of gap.

When the gap is increased from 3D to 4D, a very distinct change in the #ow characteristics
occurs. The upstream cylinder starts to shed vortices. For ¸"4D, the lift coe$cients of



TABLE 3
Nodal density for ¸"1)5D and 4D. Tandem and side-by-side

arrangements

Value of Gap
¸

Arrangement Number of
elements

Number of
nodes

1)5D Tandem 24 770 12 562
4D Tandem 26 300 13 327

1)5D Side-by-side 27 284 13 819
4D Side-by-side 30 896 15 645

TABLE 4
CPU time for the completion of a total non-dimensional

time of 500

Value of Gap ¸ Arrangement CPU time

1)5D Tandem 1h 10min
4D Tandem 1h 25min

1)5D Side-by-Side 1 h 34min
4D Side-by-side 1 h 46min
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both cylinders oscillate, with the highest amplitude experienced by the downstream body.
The drag of this cylinder becomes positive, even though with an intensity considerably
lower than the one from the upstream body. The drag on the upstream cylinder increases
from about 1)0 to approximately 1)2. If the gap is further enlarged, the drag on both
cylinders increases, suggesting that at higher gaps the result of the drag from an isolated
cylinder may be recovered.

The streaklines and vorticity contours shown in Figures 9 and 10 give a very interesting
picture of the #ow condition for each case. The plots in these "gures are at;t/D"200. The
wakes are represented by the respective streaklines. The vorticity contours are nondimen-
sionalized by the cylinder radius and the free-stream velocity. Figure 10(a) and 10(b) depict
the vorticity contours for a gap of 1)5D and 2D, respectively. Analysing these "gures one can
see that the cylinders act as a single body, with only one vortex wake forming behind the
downstream cylinder. The separating shear layer from the upstream cylinders involves the
downstream body. The interaction between these shear layers takes place only in the base
region of the downstream cylinder, with a consequent vortex formation and shedding
occurring behind this body. If one compares the formation distance of an isolated cylinder
with the case of the arrangement shown in Figure 10(a), it is clearly perceived that in the
former the vortex shedding process occurs much closer to the base of the body. The lift
coe$cient has small amplitude, as shown in Figure 8(a). When the gap is 2D, Figure 10(b),
the wake forms even further downstream. The lift coe$cient for this case does not oscillate
with a constant frequency and its amplitude is low compared to the isolated cylinder case.

In Table 5, the drag coe$cients and Strouhal numbers of the cases simulated are shown
and compared with those of an isolated cylinder. The numbered index in the coe$cients
refers to the upstream cylinder (index 1) and the downstream cylinder (index 2). For gaps in
the range 1)5D(¸(3D the drag varies from !0)18 to !0)08, indicating that the
downstream cylinder is immersed on a low-pressure region formed by the separated shear



Figure 8. Force coe$cients time history, tandem arrangement (Re"200). Distance between the
centres (a) ¸"1.5D, (b) 2D, (c) 3D, and (d) 4D. C

d
is the drag coe$cient and C

l
is the lift coe$cient.

Index 1 refers to the upstream circular cylinder, and index 2 to the downstream circular cylinder.
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Fig. 8. (continued.)
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Figure 9. Wake structure represented by streaklines, tandem arrangement (Re"200). (a) ¸"1)5D,
(b) 2D, (c) 3D, and (d) 4D.

Figure 10. Vorticity contours, tandem arrangement (Re"200). (a) ¸"1)5D, (b) 2D, (c) 3D, and
(d) 4D.
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TABLE 5
Average drag coe$cient and Strouhal number for the tandem con"guration, index 1 refers to the

upstream cylinder and index 2 to the downstream cylinder

Gap C
dm1

C
dm1

/C
d

C
dm2

C
dm2

/C
d

St
1

St
2

1)5D 1)06 0)815 !0)18 !0)139 0)167 0)167
2D 1)03 0)792 !0)17 !0)131 0)130 0)130
3D 1)0 0)770 !0)08 !0)060 0)125 0)125
4D 1)18 0)910 0)38 !0)290 0)174 0)174
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layers emanating from the upstream body. The wake visualizations and vorticity contours
presented in Figures 9 and 10, respectively, corroborate this conclusion.

It is interesting to mention the change in Strouhal number that occurs due to the
interference. For the small gaps, the Strouhal (St) number is considerably lower than the one
found in the case of an isolated cylinder. A minimum value of St"0)127 is reached for a gap
¸"3D. This value is about 65% of the Strouhal number found in an isolated cylinder
(St"0)196).

3.3. SIDE-BY-SIDE ARRANGEMENTS

Simulations have been carried out with two cylinders in a side-by-side arrangement for gaps
in the range 1)5D(¸(4D. As in the case of the pair of cylinders in tandem, the point with
coordinates (0,0) is located at the middle distance between the cylinders. The time step,
free-stream velocity and Reynolds number are the same as in the previous cases. A typical
computational unstructured "nite element mesh for the side-by-side arrangement is shown
in Figure 11. The example given refers again to ¸"3D, where ¸ is the distance between the
centres of the cylinders. The computational mesh for this case consists of 27 672 elements
and 14 013 nodes. Figure 12 shows a detail of the mesh near the cylinder walls, stressing the
importance of a suitably concentrated nodal distribution in the boundary layer. The
number of triangles and nodes for the cases with other values of ¸ is slightly di!erent, but
the characteristics of the meshes are essentially the same. All simulations for the side-by-side
arrangement have been carried out until a nondimensional time of 1500. These very long
runs were necessary to obtain power spectra of the lift coe$cient. However, for the sake of
clarity the force coe$cient time histories are shown until the nondimensional time of 200 or
400.

In panels (i) of Figure 13(a}d) the time history of the force coe$cients for the case
¸"1)5D can be seen. Pressure contours can be seen in Figure 14(a). For this case there is
a repulsive force acting on the cylinders, in accordance with the results observed experi-
mentally by Bearman & Wadcock (1973) and Williamson (1985). In Figure 13(a) is possible
to note that the average lift coe$cient of the upper cylinder is positive and this coe$cient
for the lower cylinder is negative. An explanation for this behaviour can be found analysing
the pressure contours shown in Figure 14(a). In these contours, high-pressure regions are
indicated by a red colour, and negative ones by a blue colour. A region of high-pressure
forms in front of the cylinders. A pressure drop occurs as the #uid #ows through the gap.
However, the pressure along this interstitial region (indicated by a transition from a yellow-
ish colour to a light-blue colour) is still higher than the pressure at both opposite sides of the
cylinders (darker blue colour). The frontal stagnation points move in the direction of the
gap. The positions of the separation points in the lower and upper cylinders move clockwise



Figure 11. Typical unstructured "nite element for the side-by-side arrangement. Distance between
the centres equal to 3D.

Figure 12. Detail of the mesh near the wall for both cylinders equal to 3D.
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and anti-clockwise, respectively, compared to the positions of the separation point of an
isolated cylinder. The net result of this pressure "eld is to cause a repulsive force between the
cylinders.

The drag coe$cient time histories depicted in panels (i) and (iii) Figure 13(a) provides
evidence of a &&#opping'' behaviour of the wake, as described by Kim & Durbin (1988). As
the wake is de#ected towards one of the cylinders, its drag increases. The wake visualized in
Figure 15(a) is similar to the wake formed behind a single body. However, the #opping
observed experimentally by Kim & Durbin has a time scale considerably higher than the
one observed in the present simulation. They observed that the wake was de#ected towards
one of the cylinders and it remained de#ected during several cycles of vortex shedding.
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A possible explanation for this disagreement may be due to the fact that the simulations are
two-dimensional and at a lower Reynolds number.

The results for ¸"2)0D are shown in Figures 13(b) and 15(b). The #opping phenomenon
can still be seen in the drag time history. The vorticity contours for this gap are shown in
Figure 16(b). The repulsive force between the cylinders is diminished, but the wake still
resembles the wake of a single body. For this spacing the wake is clearly not organized, with
the time histories of the force coe$cients indicating only the net e!ect of repulsion between
the cylinders.

In our simulations for ¸"3)0D, the #opping vanishes. It is possible to observe in Figure
13(c) that the drag coe$cients for both cylinders are the same and the lift coe$cients are in
anti-phase. In Figures 16(c) and 14(c) we can perceive that the wakes are in anti-phase, as
observed experimentally by Bearman & Wadcock (1973) and Williamson (1985). The wakes
behind each cylinder are antisymmetrical. As the gap increases, there is a synchronization of
the lift from the upper and lower cylinders with a phase of about 1803, corroborating the
anti-phase wake visualization. This behaviour is also observed for a gap ¸"4)0D, as can be
seen in Figure 13(d). For higher values of the gap, the repulsion force between the cylinders
diminishes, suggesting that the isolated cylinder result is recovered.

Fourier analysis of the lift coe$cient on the upper cylinder, for the cases of gaps
¸"1)5D, 2D and 3D, is shown in Figure 17. In this "gure, the abscissa represents the
nondimensional frequency ( fM ) and the power-spectrum estimation is shown in a log scale. It
is interesting to notice that for the cases where the gap is 1)5D and 2D the spectra are
broad-banded with a peak, not particularly sharp, located at fMK0)2, i.e., the Strouhal
frequency. For these gaps the &&#opping'' phenomenon has been observed and the wakes are
not synchronized. The characteristics of the spectra observed are in agreement with the
random nature of the lift results shown in Figure 13(a) and 13(b).

As the gap is increased to ¸"3D, the wakes forming from the two cylinders become
synchronized, and the spectrum presented in Figure 17(c) shows a very distinctive peak at
fMK0)2. For this case there are other peaks at the two sub-harmonics, fMK0)4 and 0)6.

The average drag coe$cient results for the values of gap simulated here are shown in
Table 6. These drag coe$cients are compared with the one from an isolated cylinder.
Analysing this table, it is possible to see that as the gap increases, the ratio between the drag
on either cylinder and the drag on an isolated cylinder begins to fall, and would eventually
tend to 1)0. The highest drag ampli"cations occurred for gaps ¸"2)0D and 3)0D, where
there was an increase of about 9 and 8%, respectively.

4. CONCLUDING REMARKS

In this work, a computational algorithm has been developed and used for the calculation of
the #ow around two cylinders in tandem and side-by-side arrangements, for Re"200.
Vorticity contours and force coe$cient time histories were presented. For the tandem
arrangement, the results were similar to those observed in the experiments. A negative drag
force on the downstream cylinder was observed for gaps less than 3D and a positive drag
force for gaps above 3D. For values of ¸(3D vortices are shed only from the downstream
cylinder and for values of ¸53D vortices are shed from both bodies. In this case, vortices
hit the downstream cylinder and they undergo an amalgamation process with the vortices
forming and being shed from the second body.

For the side-by-side arrangement, a repulsion force between the cylinders has been
observed for gaps ¸42D, similar to the experimental results obtained by Bearman
& Wadcock (1973) and Williamson (1985). The analysis of the pressure contours for this
case gave an explanation for this behaviour. Also, a &&#opping'' phenomenon has been



Figure 13. Force coe$cients against nondimensional time. Side-by-side arrangement (Re"200). (a)
¸"1)5D, (b) 2D, (c) 3D, and (d) 4D. C

d
is the drag coe$cient and C

l
is the lift coe$cient. Index 1 refers

to the upper circular cylinder and index 2 to the lower circular cylinder.
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Fig. 13. (Continued.)
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Figure 16. Vorticity contours, side-by-side arrangement (Re"200). (a) ¸"1)5D, (b) 2D, (c) 3D, and
(d) 4D.

Figure 17. Power spectrum of the lift coe$cient, side-by-side arrangement. (a) ¸"1.5D, (b) 2D,
and (c) 3D.
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TABLE 6
Average drag coe$cient, lift coe$cients and Strouhal number for the side-by-
side con"guration, index 1 refers to the upper cylinder and index 2 to the lower

cylinder

Gap C
dm1

C
dm2

C
lm1

C
lm2

1)5D 1)32 1)32 !0)40 0)40
2D 1)42 1)42 !0)22 0)22
3D 1)41 1)41 !0)10 0)10
4D 1)34 1)34 !0)05 0)05
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observed for the gaps in this range. However, the time scale was considerably shorter than
that observed by Kim & Durbin (1988). For gaps above 3D, both cylinders shed vortices
synchronized and in anti-phase. For a gap ¸"3D, the power-spectrum estimation of the
lift coe$cient showed a very distinctive peak at the Strouhal frequency, and the presence of
sub-harmonics. In the range where the &&#opping'' phenomenon has been observed, i.e., for
gaps ¸42D, power spectra are broad-banded with a peak, not remarkably sharp, located
at fMK0)2.
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Figure 14. Pressure contours, side-by-side arrangement (Re"200). (a) ¸"1)5D, (b) 2D, (c) 3D,
and (d) 4D.

Figure 15. Wake represented by streaklines, side-by-side arrangement (Re"200). (a) ¸"1.5D,
(b) 2D, (c) 3D, and (d) 4D.
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